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Optimum Tire Contour Design Using Systematic 
STOM and Neural Network 

Jin-Rae Cho*, Hyun-Sung Jeong, Wan-Suk Yoo, Sung-Woo Shin 
School o f  Mechanical Engineering, Pusan National University, 

Busan 609-735, Korea 

An efficient multi-objective optimization method is presented making use of neural network 

and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both 

maneuverability and durability of tire. Objective functions are defined as follows : the sidewall- 

carcass tension distribution for the former performance while the belt-edge strain energy density 

for the latter. A back-propagation neural network model approximates the objective functions 

to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. 

The satisficing trade-off process between the objective tunctions showing the remarkably 

conflicting trends each other is systematically carried out according to our aspiration-level 

adjustment procedure. The optimization procedure presented is illustrated through the optimum 

design simulation of a representative automobile tire. The assessment of its numerical merit as 

well as the optimization results is also presented. 

Key Words:Multi-Objective Optimization, Tire Sidewall Contour, Maneuverability and 

Durability, Systematic STOM, Back-Propagation Neural Network, CPU Time 

1. Introduct ion  

As a key component of automobiles, tire is ask- 

ed to meet various performances. Among them ma- 

neuverability and durability are most significant 

because both are directly related to the riding- 

comfort and safety of passengers. From the tire 

mechanics point of view, the former and the latter 

performances are respectively determined by the 

sidewall-carcass tension distribution and the belt- 

edge strain energy in tire inflated with air (Clark, 

1982). Both mechanical quantities are in turn 

characterized by the tire sidewall contour (sha- 

pe). For this reason, the tire contour design 

has become a crucial research issue in tire me- 

chanics community since the advent of current 
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radial tire in the mid 1910's (Purdy, 1963 ; Yama- 

gishi et al., 1987). 

The tire analysis provides us that most radial 

tires produce the peak strain-energy density at the 

belt edge. Therefore, the designer should relax it 

to improve the tire durability. On the other hand, 

Yamagishi et al. (1987) proposed that maneuver- 

ability could be improved by nonuniformly distri- 

buting the sidewall-carcass tension such that it 

reaches the maximum at the tire bead and the 

minimum at the tire shoulder. Thus, the sidewall- 

carcass tension distribution and the peak strain 

energy density at the belt edge should be chosen 

as the objective functions for both tire perfor- 

mances, and naturally the sidewall contour design 

becomes a multi-objective optimization problem. 

And, these two objective functions are to be 

discretized into several element-wise values in 

finite element approximation and the design 

variables are composed of the nodal radii of tire 

sidewall carcass. 

However, there exist two major difficulties in 

the multi-objective sidewall contour optimization 
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by traditional techniques, the strong conflicting 

trend between objective functions to the design 

variable variation and the long CPU time for the 

sensitivity analysis. Form our previous work 

(Cho et al., 2002), we observed that bead-,  shoul- 

der-side tensions and strain energy density are in 

the quite contrary relation to the design variables. 

The second difficulty is stemmed from that usual 

analytic or semi-analytic sensitivity scheme is not 

easy to apply when one uses commercial FEM 

code like ABAQUS because stiffness matrix is not 

accessible. These difficulties in the numerical 

optimization could be resolved by making use of 

neural network and interactive multi-objective 

optimization method (Sawaragi et al., 1985). 

For  the study, a back-propagation neural net- 

work model (Fausett, 1994) is used to approxi- 

mate the objective functions, and its learning is 

performed with the help of the orthogonal array 

DOE (design of experiments) table (Ross, 1988). 

Once a neural network model is learned, the multi-  

objective sidewall contour optimization is per- 

formed. The constrained optimization problem is 

formulated according to the augmented Lagrange 

multiplier method (ALM) (Vanderplaats, 1984), 

while the sensitivity analysis is carried out by the 

finite difference scheme incorporated with golden 

section and polynomial interpolation methods. 

The interactive decision making during the mult i -  

objective optimization process is performed by 

the effective satisficing trade-off  method (STOM) 

(Cho et al., 2002) in which aspiration levels are 

systematically adjusted. 

Through the optimum design simulation of a 

representative automobile tire, the proposed mult i -  

objective optimization procedure is illustrated. 

The neural network model is assessed by com- 

paring the optimum results and computation time 

with those obtained without using neural net- 

work. 

2. Problem Description and 
Numerical Formulation 

2.1 Problem description 
Radial  tire is in a complex structure of various 

rubbers, polyester and steel cords, and it may be 
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Fig. 1 Radial automobile tire : (a) schematic section 
view; and (b) 2-D FEM analysis model 

refered to a book by Clark (1982) for the details 

of its structure and the roles of its components. As 

shown in Fig. 1 (a), the tire carcass consisted of 

polyester cords is extended over belt, sidewall, 

bead and turn up regions, and polyester and steel 

cords (in the belt and bead regions) are imbedded 

into underlying rubbers respectively. 

Since the design goal is restricted to the 

sidewall contour the finite element analysis and 

design becomes a static problem of tire inflation. 

Figure 1 (b) shows a two-dimensional finite ele- 

ment model generated by I - D E A S  solid modeler 

(2002), where the ABAQUS planar axisymmetric 

elements (CAX3 and CAX4 (1998)) are used. 

As well described in a paper by Chang et al. 

(1988), the planar axisymmetric model is an ap- 

proximate one because an axisymmetric twist 

caused by the belt cord inclination to the tire 

meridian axis is not taken into consideration. 

Even though such an axisymmetric twist could be 

modeled with the ABAQUS generalized axisy- 

mmetric elements with twist (CGAX3 and 

CGAX4) ,  one can not specify any suitable sym- 

metric boundary condition to a half tire model 

shown in Fig. l (b ) .  

Furthermore, polyester cord and steel cords in 

belt layers imbedded in underlying rubbers are 

modeled with the ABAQUS rebar elements 

(1998), meanwhile bead steel cords and underly- 
ing rubber as several homogenization elements. 

On the other hand, the frictionless contact 

boundary condition is imposed to the bead-r im 

interface. The ABAQUS Mooney-Rivl in material 

model is applyed for rubber elements and the 

hyperelastic material model for belt and bead 

steel cords. 
Referring to Fig. 2, there is defineed the side- 
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Fig. 2 Design region and design parameters 

wall carcass portion as the design region, from 

which some of inside nodal radii Ri of carcass 

elements are taken as the design variable vector 

X :  

X = {  XI, X2 . . . . .  XN }, X i = R ~  (1) 

By selecting some of inside carcass nodal radii, 

we interpolate the entire inside sidewall contour 

as 

N 
R (o) = E (o) (2) 

k = l  

with Lagrange basis functions { ¢ i (0)} ,  in order 

to update the sidewall contour after each 

optimum design iteration. Mixed-type objective 

functions are composed of element-averaged ten- 

sion values of t carcass elements and strain-ener- 

gy densities of s belt-edge elements : 

F (X) ={/~(X), f2(X) ..... it(X),/t+l(X) ..... /,+s(X)} (3) 

It is noted that the objective elements may be 

either inside the design region or not. Further- 

more, some bead-side element-averaged tensions 

to be increased should be changed to negative 

values for the minimization problem. This vector- 

type multi-objective function is converted to a 

scalar-type objective function such that 

F(X)-- - -  max { w i [ f * - f i ( X ) l }  (4) 
l < i < t + s  

where, w/and fi* denote the weighting factor and 
the ideal level for ith objective function. The 

ideal level means the possible peak level to which 

the corresponding objective function can reach 

ideally. 
On the other hand, the tire contour design is 

confined with inherent constraints associated with 

the automobile specification and the manufa- 

cturing limitation. In the current sidewall contour 

design, the constraints are imposed on arc length 

and radius changes. By denoting O be the allo- 

wable relative tolerance in the sidewall carcass 

arc length change and R~, R~ be the allowabl 

e upper and lower limits of the i the nodal radius, 

the constraints are as follows: 

M-1 
(1 - O) L0< E , / (xm-xi)2+ (y++,_y+)2 < (1 + O) L+ (5) 

k=l 

R#<R+<_R, v, i = 1 ,  2 . . . . .  N (6) 

where M indicates the total inside node number of 

carcass elements inside the design region. Even 

though there are constrained only the nodal radii 

selected for the design variables, all nodal radii 

within the design region satisfy the upper and 

lower limits due to the linear Lagrange inter- 

polation feature. In summary, there are N design 

variables, ( t  + s )  objective functions, and 2 ( N +  

1) constraints. 

2.2 Mul t i -objec t ive  opt imizat ion formulat ion 
As multi-objective sidewall contour optimiza- 

tion for maximizing maneuverability and dura- 

bility is formulated as follows : 

Find X = {  )(1, )(2 . . . . .  X~t }, X i = R i  (7) 
Minimize F ( X )  (8) 

Subject to [K] (  u ) = { f }  (9) 

gl (X) = ~ 1 ~ ~  (Yi+I-yi) 2 (1 + 0 )  Lo<0 (10) 
k=l 

M-I 
g2 (X) = (1 - O) L0- E ((x~+l - x i ) %  (yi+l _yi) 2 <0 (11) 

k=l 

gi+z(X) = R # - R i < O ,  i = 1 ,  2 . . . . .  N (12) 

g~+2+u(X)=R~-R~v<O, i = 1 ,  2 . . . . .  N (13) 

According to the augmented Lagrange multi- 

plier method (ALM) (Vanderplaats, 1984), the 

weighted objective function subject to the ine- 

quality constraints is converted to an uncon- 

strained pseudo-objective function given by 

A ( X ;  ,~,, rp, ~si) = F ( X )  +2,~,{ ~#~+ r~(~i) 2 } (14) 
i= l 
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where ,,l~ indicates the Lagrange multipliers, 7*, the 
penalty parameter, and #i the constraint-depen- 
dent parameters defined later. And, the norma- 
lization factors c~ between the objective functions 
and the constraints are defined by 

c~=l V F ( X ) I / I  V&(X)  I (15) 

Finally, the sidewall contour optimization 

problem ends up with 

Find X = {  X1, Xz . . . . .  XN } 
(16) 

minimizing A (X  ;/~i, T*,, ~i) 

3. S y s t e m a t i c  Sat i s f i c ing  T r a d e - O f f  

M e t h o d  

3.1 Satisfieing trade-off method (STOM) 
and sensitivity analysis 

In usual multi-objective optimization probl- 
ems, improvement of one performance may fre- 
quently degrade other performances. This con- 
flicting trend with respect to the design variable 
leads to the failure in seeking a global optimum 
solution by usual non-interactive mathematical 
programming in which the designer's decision- 
making is not included. This implies that the 
designer has to interactively judge which per- 
formance should be sacrificed or improved by 
controlling the weights. A representative inter- 
active multi-objective optimization method is 
satisficing trade-offmethod (STOM) introduced 
by Nakayama and Furukawa. (1985), in which 
the trade-off is accomplished by adjusting the 
aspiration levels ~ of individual objective func- 
tions fi.  Here, the aspiration level is defined as the 
level desired to be reached from the current level 

f~ of objective functions. 
In the employment of STOM, the designer is 

asked to adjust individual aspiration levels at 
each trade-off iteration stage. But, without any 
suitable adjustment algorithm this decision-mak- 
ing process becomes not only painstaking but also 
trial and error relying on the designer's empirical 
know-how. In order for the systematic trade-off, 
this study employs the aspiration-level adjust- 
ment procedure proposed in the previous work 
(Cho et al., 2002), and summarizes it in the next 
section. Here, this study describes the sidewall 

contour optimization process composed of two 
iteration loops, the outer trade-off iteration and 
the inner minimization iteration. 

(Step 1) Determine the ideal levels f*  of in- 
dividual objective functions by single-objective 
optimization method : 

F*- -{f t* ,  f~', f~" . . . . .  f~'+s } (17) 

(Step 2) Begin the trade-off iteration (k = 1, 2, 
3 . . . .  ) by making initialization: X °, ,t~ and 7~, 
and setting (or modifying) the aspiration levels 
fP  according to the systematic aspiration-level 
adjustment procedure, 

10k={ sgk, Lk, kk . . . . .  f~+s} (18) 

It is worth to note, while being updated during 
the minimization iteration, that each trade-off 
loop begins with the same initial values for para- 
meters /li and )'p. Next, we compute the weights 
w~' and the normalization factors c~' : 

1/ w~=l f { ' - / ?  l (19) 

c~=l F ( ~  + 8X) - F  (X~,)I/I ge ( ~ - a x )  -g, (~)1 (20) 

(Step 3) Begin the inner loop (1=1, 2, 3 . . . .  ) 
for minimizing the pseudo-objective function to 
seek the kth optimum solution Xh : 

, +2,~71,(_~ , z A(XI;  a,, ),~, ~/) =F(XI)  a,#, +),~(¢[)a}, 
/=1 

During the iteration process, we evaluate the 
direction vector S t = {  S t, S~, S~ . . . . .  SZt+s } by 

finite difference scheme and update : 

s[ A(X,~-~+SX,; A~, )'~, (J]-A(X~-I; 2I~, )'~, (~]) 
(22) 

8Xi 

X , ~ = X / , - ' + A X  ~, AX,  I =a 'S '  (23) 

The direction vector magnitude 0t I in Eq. (23) 
is determined by golden section and polynomial 
interpolation methods. When either of the fol- 
lowing two convergence tolerances defined by 

max I ~$-A1-11-<ea, I f(X~) -F(X~ -~) I/If(X~)[-<e~ (24) 
l~i~t+~ 

is satisfied, we terminate the minimization itera- 
tion. Otherwise, we repeat the minimization ite- 
ration with updating 

/1~+~ =,a[ q-2 T~ !k/ (25) 
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7~÷t= z'7~ (26) 

where r ( r >  1) is an update constant. 

(Step 4) Judge whether the optimum solution 

is satisfactory or not. When further trade-off is 

needed, go to Step 2 by letting X~ be X°+I. A 

judgement criterion is also summarized in the 

next section. 

3.2 Systematic aspiration-level adjustment 
procedure 

The study defines the aspiration-level indica- 

tors zff of individual objective functions, after the 

k the trade-off  iteration, by 

rl~=lf?-/?l/If?-.~h i=1,  2 . . . . .  ( t+s)  (27) 

where f/h are individual objective-function val- 

ues optimized after k th trade-off iteration. Then, 

by comparing with the preset aspiration levels )~, 

f/k are classified according to r/~ : 

[ exceeded f f ,  z~ < 1 

f/~ ~ J identical to /~ ,  z]~ = 1 (28) 
not reached to f l  k, r//k > 1 

The choice of initial aspiration levels is rather 
arbitrary, but those should be located between the 

ideal levels and the initial objective function 

values. After the first trade-off iteration (i. e. k =  
1) we evaluate z]~, upon which we make a deci- 

sion to classify individual objective functions into 

three sets, (i) objective functions that should be 

improved more (a , ) ,  (ii) those that can be re- 

laxed (an) and (iii) those that are acceptable 

(~,0. For  the objective functions with ~}~ 1 in 

the set a ,  and with ~ < 1 in the set OR, as well as 

the whole objective functions in the set ~A, we 
keep the current aspiration levels for the next 

trade-off iteration. While, for those with 7/,1.< 1 in 

the set a t  and with r/) > 1 in the set ~R, aspiration 
levels for the next iteration are modified such that 

I f/* _ f x  I/I f* _/ /z  I---- 1 (29) 

In this manner, aspiration levels are continu- 

ously adjusted, along the trade-off  iteration, until 

all objective functions are judged to be accept- 
able. 

According to this adjustment procedure, all 

aspiration-level indicators sequentially approach 
unity with the trade-off iteration. When all of 

(~ "(~ (~ .... -~ -~ ~0 - -  Input layer 

l / ,.. 

! i ! J ~ Hidden layers 

w4~~  " 

~ ~ n e t 4  (0 
V © ® . . . .  0 ©co-°~tputlay~ 

Tel 0 * * * * *01 

Fig. 3 Architecture of neural network model 

aspiration levels are judged to be sufficiently and 

uniformly approached unity, we terminate the 
satisficing trade-off design process. 

4. Approximation of Objective 
Function 

In order to reduce the total CPU time for a 
large number of sensitivity analyses, we approxi- 

mate (or learn) the ( td-s )  objective functions 

according to a neural network model. Referring 

to Fig. 3, input and output layers are composed of 

N and M neurons, respectively, where N is iden- 
tical to the design variable number while M t o  the 

objective function number ( t+s ) .  On the other 

hand, all three hidden layers are composed of the 

same number of neurons as for the output layer, 

but the choice of neuron number for hidden layers 

is rather flexible. The outputs O i l  of individual 
neurons in the input layer are delivered to all 

neurons in the first hidden layer with the con- 

necting weights w 1 is. In this manner, output 
signals of neurons in the upper layer are input to 

all neurons in the next layer with different 

connecting weights, up to the final output layer. 

Output signal from a specific neuron is made by 

the sigmoid transfer function to which a linear 
combination of weighted upper-layer output 

signals is input. Learning of a neural network 

model is performed iteratively through a series of 
forward computing and backward learning. 

4.1 Forward computing 
In order to learn a neural network model, we 
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first prepare an input data group I = {  I m . . . . .  
I TM . . . . .  I t° }, ITS)={ 1(1 s) . . . . .  I~ s) . . . . .  Ik ~) } for the 

input layer and a target output data group T = 
{ T  ") . . . . .  T t~) . . . . .  T (') }, T t ' )={  T(*) . . . . .  T[ ~), 

.... T~ s) }. Both data groups contain l data sets 

I tl) and T (°, respectively, where l indicates the 
number of learning cases in DOE table. Referring 

to Fig. 3, each input data set I (s) is composed of 

N inpu t  data for Nneurons  in the input layer that 
are chosen according to the three level DOE table 

made by the orthogonal array design (Ross, 

1988). Meanwhile, each target output data set 
T ts) contains M target output data for M objec- 

tive functions (i. e. M neurons in the output lay- 

er), and those are obtained by the direct 

ABAQUS (1998) analysis with the corresponding 
input data set I ts) . 

Besides, we set the initial connecting weights 
wl!~ J, W2 tll, W3~12 and w4~1t, according to the 

random number generation algorithm, which are 

double-precision real numbers within [--0.5, 

0.5]. With the preset connecting weights, we per- 

form initial forward computations for l learning 

cases. Let us describe the forward computing 

process for a specific learning case s. 

Individual input-layer neurons generate output 

signals given by 

0 1 ~ ) = I ~  *), i = 1 ,  2 . . . . .  N, s = l ,  2 . . . . .  l (30) 

and which transfer to all neurons in the first 

hidden layer. Then, each neuron in the first hid- 

den layer produces output signal O2~ (-~) through 
the transfer function processing of a linear com- 

bination of the connecting weights w l ~  ] and the 

input signals OilS) : 

N 

0 2 ~ s ) = f  (netl(jS)), netl(J)=i~=lwl!~lOl!S} (31) 

where, f ( . )  is the sigmoid function defined by 

f ( x )  = l / ( l + e - X ) .  

In this manner, the other two hidden layers 
generate output signals 03~, ~) and 04~ s), respec- 

tively. Passing through the output layer provides 
us an output set corresponding to the learning 

case s such that 

M 

O t S ) = f  (net4ts)), net4t  s)= ~ w 4 ~ 1 ~ 0 4 7  ~ (32) 
k = l  

After completing the forward computing for all 

learning cases with the preset connecting weights, 

we have an initial output data group given by 

0={ 0 m ..... 0 (s) ..... 0 t~/}, 0is)={ 01(~) ..... 0! '~ ..... 0~ ) } (33) 

It is worth to mention that we normalize target 
output data T ts) because the sigmoid function 

produces signals between 0 and 1. 

4.2 Backward learning 
Following the forward computing, we perform 

the backward learning for adjusting the initial 

connecting weights, in order to reduce the learn- 

ing error of the neural network model defined by 

1 M 
E t~) - - - - E  ( T [  ~) - Ol ~)) z 

- -  2 l = 1  
(34) 

It is worth to note that the backward learning 
is also preformed separately for different learning 

cases. But, differing from the forward computing, 

the connecting weight adjustment is carried out in 

the reverse direction. In other words, the con- 

necting weights w4kz between the output and the 

third layers are updated first, and so forth. 

According to usual minimization principle, the 

variations of connecting weights between arbitra- 

ry two layers are calculated by 

A+ L(~>--_ 8 E  t~) - , m - -  z ] ~ , I  =1,2, 3,4 (35) 

where z~(z]< 1) is defined by the preset learning 

ratio. For  the connecting weights between output 

and the third hidden layers, we use the following 
chain rule together with e -net4~'= (1 -- Ol s)) / O t  s) 

derived from Eqs. (31) and (32): 

~E(~) 8E(~) aOt  s) Onet4~ ) 
Ow4m --  ~ -  ~netn~m s) Ow4m (36) 

= -- ( T[  s) --  Ots)) Ol *) (1 - Ol s)) O4~ ") 

Substituting Eq. (36) into Eq. (35) leads to 

Aw4~S~ = r/84t s104(k ~), 84~ ~) = ( T(fl ~ - Ots)) Oil) ( 1 - 01 ~)) (37) 

For the connecting weights between last two 

hidden layers, we apply one more chain rule to 
the first term on the r ight-hand-side of Eq. (36) 

such that 
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8E(~) 8EI~I 004~ s) ~net3? ) 
8W3hk 304t s) Onet3? ) OW3hk 

[ 3EC~ ) Onet4!st ] O041s) Onet3~ ) (38) 
= L ~  a o - - 0 ~ / ~  aw3~ 

Then, this relation leads 

A w3~,~' = 8~3~" 031, s)= (~184ts)w4~ ~] ) 04!, ~) (i - 04!, ')) (39) 

Along the similar procedure, it is not hard to 

derive the next two relations for the remaining 

connecting weights : 

A..,(s)_~x,.,(s~,q.~(s) )w3 (1-03~, ~)) (40) ~w~h-,lush u,: , 82~, s)= 83~ s 03~ s) 
= 

( )1 )  s) [tl (s) _ (s) A (s-,,~cl(s,ql~s).. 81: - 82~ w2jh 02:(1 02: (41) W , u - - q v , j  ' J , i  

After completing backward learning for all 

learning cases, we modify the current connecting 

weights such that 

l 
wL~f + u :  wI,  IP ' + + ~ A w I } ]  ), I =  1, 2, 3, 4 (42) 

for the next forward computing. A series of for- 

ward computing and backward learning repeats 

unti l  the output- layer  signals satisfy the stop 

criterion defined by max  10} s ) -  T}~) l~e r .  
l : i i ~ M , l  " : 8  < l 

5. Numerical Experiments 

According to the theoretical formulations we 

develop a test optimization program, and which is 

interfaced with I -DEAS(2002)  and ABAQUS 

(1998) commercial codes. A representative P205/ 

65R14 automobile tire is considered, and its 2-D 

FEM mesh and the problem definition are de- 

picted in Figs. 1 (b) and 2, respectively. Five no- 

dal radii of inner carcass elements are defined as 

the design variables, while nine carcass-elements 

and one belt-edge element are taken for element- 

averaged carcass tensions and strain-energy in- 

tensity, respectively (element numbers are labeled 

in Fig. 2). Simulation data for the neural  network 

learning and the contour optimization are given 

in Table l, and the initial radii Ri  of five design 

variables are equally 2.075in. By taking the initial 

radii as the design variable values for level 1, the 

other two levels are selected by applying incre- 

ments to the initial radii : R i =  (2.075-0.1)  in for 

Table 1 Data taken for numerical simulation 

Parameters Values 

For neural network learning 
Type of DOE table L27(3 z3) 
Number of design variable levels 3 
Design variable variations for three levels Oin, +_O.lin 
Number of neurons in input layer 5 
Neuron numbers in hidden and output 10, 10 
layers 
Learning ratio and learning tolerance z/, s r  0.8, 0.005 
For numerical optimization 
Design variable number N 5 
Numbers of objective functions ft, fs 9, 1 
Allowable tolerance of arc length change 0 0.1 ( I0~)  
Allowable nodal radius change 8Ri +_0.2in 
Initial Lagrange multiplier ,~o. 0 
Initial penalty parameter and 7~ 1 
Update constant r 10 

level 2 and R i = ( 2 . 0 7 5 + 0 . 1 )  in for level 3. 

We first learned the back-propagat ion neural 

network model with three hidden layers accord- 

ing to the learning procedure described in Section 

4. After that, we set the ideal levels for ten ob- 

jective functions with the help of SOP (single-ob- 

jective optimization).  As well, we set the first 

aspiration levels based on the initial objective 

functions and the ideal levels. Those levels 

selected are given in Fig. 4 and Table 2. We note 

that all numerical data are obtained using the 

neural network model. 

Referring to Fig. 4, seven of the SOP values are 

directly taken as ideal levels, but two of the SOP 

values are modified for the ideal levels of f3 and 

fs. The SOP value of f3 is higher than two bead- 

side ideal levels so that it was modified. Mean- 

while, The SOP value of fs obtained by the 

tension minimization is not appropriate for the 

ideal level, because its position, from which the 

SOP switched to the minimizat ion problem from 

the maximization one, is rather ambiguous wea- 

ther the carcass tension should be increased or 

decreased. For  this reason, we adjust it by moving 

it towards the initial value. Meanwhile, initial 

aspiration levels f i  1 a r e  set by shifting the initial 

values towards the ideal levels such that those are 

located between the ideal and initial levels. 

With the initial aspiration levels f l  1 we begin 
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Fig. 4 Ideal levels and first aspiration levels 

the interactive t rade-off  iteration. The first opti- 

mum solutions f i  1 and the corresponding aspi- 

rat ion-level  indicators V~ evaluated according to 

Eq. (27) are recorded in Table  2. The tension 

values f l l - - f 3  t of  three bead side elements and 

the belt-edge strain energy intensity fi~0 are 

shown improved slightly, so we classify these four 

functions into the set ~ i  for further improvement. 

On the other hand, the other six become worse on 

the whole than the initial values. Because of  the 

great importance of  the belt-edge carcass tension 

for the maneuverabil i ty improvement,  we classify 

two bel t -edge-side tensions fs-- f9 into the set ~i .  

Meanwhile,  the tension values f4--f7 are of mid- 

dle carcass elements, s o  the improvement  direc- 

tion in such tension values is rather ambiguous at 

the initial design stage. From this reason, we keep 

the current levels fsl-- f61 of two center elements 

(by classifying into the set ~A) and sacrifice the 

other two by classifying into the set ~R. 

According to the aspirat ion-level  adjustment 

Table 2 Iteration-wise optimization results according to the neural network and systematic satisficing trade-off 
method (unit of strain energy intensity : lbf. in~in 2) 

Element-averaged Carcass tension 
Strain 
energy 

intensity 

Objective function f~(30) f2(40) fa(51) f4(59) fs(65) f6(71) fr(75) f8(80) f9(93) f10(303) 

Ideal Ievelf* 2.263 2.014 2 . 2 1 1  1 . 7 9 3  1 . 5 4 3  1 .988  2.113 2.292 2.238 2.090 
Initial level )con 1.326 0.940 1.225 1.323 2.035 2.819 2.847 2.787 2.575 2.580 

Asp. level 1 j2il 1.546 1 . 2 2 3  1 .471  1 . 3 5 9  1 . 8 7 8  2.754 2.689 2.675 2.491 2.300 
Optimum I fix 1.485 1 . 0 7 4  1 . 2 4 8  1 . 2 6 9  1 . 8 3 5  2.847 2.898 2.808 2.583 2.373 
Indicator 1 7/~ 1.086 1 . 1 8 7  1 . 3 0 0  1 .208  0.872 1 .361  1 . 3 4 6  1 . 3 6 2  1.302 1.349 
Decision 1 I I I R A A R I I I 

Asp. level 2 f2  1.546 1 . 2 2 3  1 .471  1 . 2 6 9  1 . 8 7 8  2.754 2.893 2.675 2.491 2.300 
Optimum 2 f i  2 1.805 1 . 4 4 5  1 . 6 0 5  1 . 2 0 8  1 . 7 4 3  2.787 3.012 2.715 2.510 2.277 
Indicator 2 r/, 2. 0.639 0.719 0.819 1 . 1 1 6  0.598 1 . 0 4 3  1 . 1 4 5  1 . 1 0 4  1.075 0.893 
Decision 2 I I I R A R R I I I 

Asp. level 3 )~3 1.805 1 . 4 4 5  1 . 6 0 5  1 . 2 0 8  1 . 8 7 8  2.787 3.012 2.675 2.491 2.277 
Optimum 3 f ~  1.814 1 . 4 4 8  1 . 5 9 6  1 . 2 0 2  1.730 2.797 3.008 2.693 2.495 2.286 
Indicator 3 z/~ 0.979 0.994 1 . 0 1 4  1 .009  0.558 0.995 0.995 1 . 0 4 7  1.013 1.047 
Decision 3 I I A A I A A I A R 

Asp. level 4 ~:t 1.814 1 . 4 4 8  1 . 6 0 5  1 . 2 0 8  1.730 2.787 3.012 2.675 2.491 2.286 
Optimum 4f,4 1.816 1 . 4 5 4  1 . 6 1 6  1 . 2 0 0  1 . 6 1 3  2.799 3.009 2 . 6 8 1  2.485 2.279 
Indicator 4 zh 4. 0.994 0.989 0.980 1 .013  0.374 1 .014  0.996 1 . 0 1 4  0.975 0.961 
Decision 4 A A A A I R A A A A 

Asp. level 5 )?~ 1.814 1 . 4 4 8  1 . 6 0 5  1 . 2 0 8  1 . 6 1 3  2.799 3 .011  2.675 2.491 2.286 
Optimum 5 f~  1.822 1 . 4 5 2  1 .601  1 .201  1.610 2.794 3.008 2.664 2.473 2.284 
Indicator 5 z]~ 0.982 0.993 1 .005  1 .011  0.995 0.993 0.996 0.971 0.928 0.989 
Decision 5 A A A A A A A A A A 
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Comparison of multi-objective optimization results between neural network expectation and 
ABAQUS analysis (unit of strain energy intensity : lbf. in/in 2) 

Element-averaged Carcass tension (lbf) Energy 
Intensity 

Objective function fx(30) f2(40) fs(51) f4(59) f5(65) f6(71) f7(75) fs(80) f9(93) f10(303) 

Initial value fo¢ 1.326 0 .940  1.225 1.323 2 .035  2.819 2.847 2.787 2.575 2.580 

MOP value f~a 1.811 1 .458 1.579 1.161 1.902 2.849 2.919 2.661 2.479 2.365 
MOP value f/,Jv 1.800 1.425 1.551 1.216 1.693 2.823 2 .972  2 . 6 5 2  2.467 2.297 
Difference ,~I~o~ --0.006 --0.023 --0.018 0.047 --0.110 --0.009 0.018 --0.003 --0.005 --0.029 

technique described before we adjust the initial 

aspiration levels for the next iteration. As given in 

Table 2, only two of them are modified, ~2 and 

)~2 underlined. After the second iteration, three 

bead-side tension values f12~fa  2 and belt-edge 

strain energy intensity f~0 are shown improve 

d more than the desired second aspiration levels. 

Two belt-edge tension values faz--foZare shown 

lowered but not reached to the aspiration levels. 

Hence we make a decision to classify these six 

functions into the set H~, in order for further max- 

in variation in the sidewall carcass tension distri- 

bution and further reduction of strain-energy in- 

tensity. On the other hand, we sacrifice the four 

middle tension values by classifying those into the 

sets He and Ha, in order to increase the weights for 

the above-mentioned six functions relatively. 

The third aspiration levels ,~3 are listed in 

Table 2, where three are kept unchanged accord- 

ing to the aspiration-level adjustment procedure, 

together with the corresponding optimum solu- 

tions and aspiration-level indicators. In order for 

further increase of the bead-side tension we clas- 

sify fl  and f2 into the set 31. In addition, the 

center tension f53 is judged to be relatively high 

so that we decide to lower it. Meanwhile, we 

experienced that belt-edge tension and strain-en- 

ergy intensity are in conflicting relation, so we 

sacrifice fl0 (by classifying into the set He) in 

order for further decrease of tension value fa 3. In 

this manner we complete the multi-objective opti- 

mization in five iterations. 

As can be realized from Table 2, all of aspi- 

ration-level indicators approach unity with the 

trade-off iteration, and those show a uniform 

distribution after the final iteration. Even though 

it is natural, different Pareto solutions would be 

reached when different combinations of trade-off 

decision-makings are made. However, the adjust- 

ment procedure of aspiration levels is systema- 

tically performed in terms of the aspiration-level 

indicators and three decision-making categories. 

As a result, the designer's burden in adjusting the 

aspiration levels becomes relaxed. 

Comparison of final ten objective-functions 

fi,~¢ with the initial o n e s  fiON is made in Table 3. 

Three bead-side tension values are considerably 

increased, and two belt-edge tension values and 

strain-energy intensity are also remarkably de- 

creased, which was desired for the maneuvera- 

bility and durability improvement. On the other 

hand, two tension values, f4(59) and f7(75), are 

shown to be degraded compared to the initial 

ones, and which is of course resulted from the 

sacrificing of them to improve the other six 

functions. The comparison of sidewall carcass 

tension distributions between initial and optimum 

contours is given in Fig. 5. As well as, we record 

the optimum solutions f~,a obtained without using 

neural network, for the purpose of the neural 

network assessment, which are of course achieved 

with the same ideal levels, aspiration levels and 

decision criterion that the case using neural net- 

work took. The relative difference A/~op is defined 

by (fiJc--fi, A)/fi.a. Both cases show a good 
agreement each other with the maximum relative 

difference less than 5%. 

In Table 4, the optimum solutions of five de- 

sign variables / ~ ¢  are compared with the initial 

ones and the optimum solutions obtained without 

neural network. We see that all design variables 

satisfy the constraints imposed on the optimi- 
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Table 4 Comparison of optimum nodal radii (unit : in) 

R1 R2 R3 R4 R5 L 

Initial R ° 2.075 2.075 2.075 
2.036 1.965 1.998 

Optimum/~i,a (--0.039) (--0.110) (--0.077) 

2.026 1.975 1.950 
Optimum/~i,N (--0.049) (--0.100) (--0.125) 

Difference AvaR --0.005 0.005 --0.024 

2.075 2.075 3.238 
2.055 2.139 3.204 

--0.020) (0.064) (--1.05%) 
2.017 2.151 3.196 

--0.058) (0.076) ( -- 1.30%o) 
--0.018 0.006 --0.002 

3 . 0 -  

.Q 
2 . 5  

2.0.  

1.5- 

E 

1.0- 

(*) : calculation of ~Ri or 0. 

30 40 9 5 71 75 0 93 
bead - element number belt edge 

Fig. 5 Carcass tension distribution after 
optimization 

Fig. 6 

optimum cont o u ~  

Sidewall carcass contours : (a) initial ; and 
(b) optimum 

zation problem and the relative differences Av~ 

between two optimum solutions are less than 3%. 

Referring to Fig. 6 showing the comparison of 

initial and optimum sidewall contours, the initial 

one should be moved inward, while being moved 

outward at the tire shoulder region, in order to 

enhance both maneuverability and durability. It is 

worthy mentioning that the optimum contour 

needs to be smoothened by curve fitting with a 

number of polynomials. The reason is because the 

bumpy contour obtained by the numerical opti- 

Table 5 Total CPU time spent for optimization 

Optimization Neural network CPU 
SOP MOP learning Time 

Without neural 26 hrs 10 hrs 
None 36hrs 

Network (390) (156) 
Neural network 1 hr 8 hrs (27) 9 hrs 

(*): FEM analysis times. 

mization not only cause difficulty in manu- 

facturing but also produce stress concentration. 

Comparison of the total CPU times spent for 

the sidewall are presented in Table 5, in which 

SOP is used only for the ideal level setting. The 

case with neural network requires extra time for 

the neural network learning, but the total CPU 

time is considerably reduced by four times. Fur 

therrnore, it requires only 27 times of FEM ana- 

lyses for the neural network learning. As a result, 

the CPU-time effectiveness of neural network is 

also preposterous for the interactive multi-objec- 

tive optimization. 

6. Conclusion 

A systematic and time-effective multi-objective 

optimization procedure has been addressed in 

order to simultaneously improve both maneuve- 

rability and durability of automobile tires. For 
which a back-propagation neural network model 

was incorporated with our previous systematic 

satisficing trade-off method (STOM), together 

with the use of the orthogonal array DOE tech- 

nique and the mathematical finite difference 

scheme for the sensitivity analysis. The proposed 

optimization procedure was applied to the side- 
wall contour design of a representative autom- 

obile tire model (P205/65RI4), and compared 
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with that relying on by the FEM-based finite 
difference sensitivity analysis (i. e. without neural 
network learning). The expectation accuracy of 
the neural network model has been verified to be 
reliable from the relative difference evaluation: 
less than 5% in multi-objective optimum results 
while less than 3% in the final optimum sidewall 
radii. In the computation efficiency aspect, the 
proposed method requires FEM analyses only for 
the neural network learning, so that the total 
CPU time was reduced considerably by four 
times. 
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